
J. Fluid Mech. (2004), vol. 521, pp. 217–239. c© 2004 Cambridge University Press

DOI: 10.1017/S0022112004001788 Printed in the United Kingdom

217

Inner scaling for wall-bounded flows subject
to large pressure gradients

By T. B. NICKELS
Department of Engineering, Cambridge University, Trumpington Street, Cambridge CB2 1PZ, UK

(Received 31 July 2003 and in revised form 10 August 2004)

In this paper the scaling of the mean velocity profile and Reynolds stresses is
considered for the case of turbulent near-wall flows subjected to strong pressure
gradients. Strong pressure gradients are defined as those in which the streamwise
pressure gradient non-dimensionalized with inner variables, p+

x , is greater than 0.005.
A range of values of this parameter (−0.02 <p+

x < 0.06) is examined in this paper.
An appropriate functional form for the mean velocity profile is developed and
used to parameterize available data. A physical model for the parametric variation
with pressure gradient is then developed. This model is based on the concept of a
universal critical Reynolds number for the sublayer which explains (both qualitatively
and quantitatively) the variation of the important parameters in the inner flow. In
particular this gives an explanation for the shift in the apparent log-law due to
pressure-gradient effects and provides an appropriate scaling for the Reynolds stresses.
It is shown that this model is not only physically plausible but is also consistent with
the available data.

1. Introduction
The law of the wall and the related logarithmic overlap law have formed the basis of

analysing turbulent boundary layers for some time. Despite some recent controversy
over their applicability and basis (George & Castillo 1997; Buschman & Gad-el-
Hak 2003), they still provide useful tools for parameterizing turbulent boundary
layer velocity profiles. The logarithmic law is derived as the asymptotic form of
the boundary layer mean velocity profile at very high Reynolds number (strictly
applicable in the limit of infinite Reynolds number). Despite this restriction, it is
frequently applied as a means for parameterizing data, and even for evaluating wall
shear stress (using the ‘Clauser chart’ method), in situations where this condition is not
met. In particular it is often used where the Reynolds number of the boundary layer
is too small for an overlap region to exist. Another situation in which the logarithmic
law is known to ‘break down’ is in the case of strong streamwise pressure gradients.
This breakdown appears as a shift in the profile above or below the traditional
log-law and may also be associated with a change in shape of the profile (Nagano,
Tagawa & Tsuji 1991; Spalart & Watmuff 1993; Fernholz & Warnack 1998). As a
result, various researchers have investigated this effect with the objective of specifying
conditions under which the logarithmic law may be expected to apply (Huffman &
Bradshaw 1972; Spalart 1986; Österlund et al. 2000). These often take the form of
a critical value of Reynolds number or pressure-gradient parameter beyond which
there is a significant departure from universal behaviour. Whilst this information is
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useful, it would seem that any departure from universal behaviour would be gradual
rather than occurring at, or around, a certain parameter value.

The author’s interest in this area arose whilst trying to parameterize low-Reynolds-
number boundary layer profiles, some involving strong pressure gradients. It was
found that the usual tools (law of the wall, law of the wake etc.) had serious problems
in dealing with these flows. This is not surprising since they are based on assumptions
not valid for these conditions. In their usual forms they also have certain problems
with satisfying the correct boundary conditions and asymptotic behaviour.

In order to proceed further, it was necessary to construct a function that would be
suitable for use in these low-Reynolds-number, strong-pressure-gradient flows. The
idea was to use known boundary conditions and asymptotic forms to construct a
functional form that behaved sensibly under all conditions of interest, whilst retaining
the desirable essentials of the usual approach. This tool could then be used to examine
the changes in the flow under the influence of strong pressure gradients.

When this was done it was found, as already noted, that one of the parameters
(which corresponds closely with the log-law intercept) does indeed vary with the
applied pressure gradient (this is the ‘shift’ mentioned above). This led to the
development of a simple model, which explains how and why the parameter varies.
After studying much data, it appeared that the model and the new functional form
provided a very useful description of boundary layers at low Reynolds number and in
strong pressure gradients, and hence the results of this development and investigation
may be of interest to other researchers in the field.

The paper may be loosely divided into two parts. The first part develops the new
empirically based functional form for the mean velocity profile which correctly takes
into account the appropriate boundary conditions and asymptotic behaviour, whilst
retaining the basic overall features of the classical approach (such as the logarithmic
asymptotic form, the linear sublayer and the wall-wake structure). This form is
developed merely as a tool to analyse the existing data in a consistent and objective
manner so as to identify important changes in parameters with the pressure gradient.

The second part develops the critical sublayer Reynolds number model which simply
explains (both qualitatively and quantitatively) the way in which the traditional law
of the wall is modified by pressure gradients. This part is considered to be the major
contribution of the research.

2. The functional form for the mean velocity profile
In this section a useful functional form for the mean velocity profile for wall-

bounded flows is developed. When analysing data for small parametric effects it is
important to have a sensible functional form to fit to the data which has the correct
asymptotic and boundary conditions. This is particularly important when examining
low-Reynolds-number flows with pressure gradients, where traditional formulations
are not ideal since they assume a function based on the high-Reynolds-number
asymptotic form of the equations. The approach adopted here is unashamedly
constructive, i.e. plausible functions with the correct boundary conditions and
asymptotic forms are constructed where necessary (when they cannot be deduced
otherwise). The form found is simply a useful tool for the parameterization of the
data.

As already discussed, the traditional form for the variation of the streamwise
component of the mean velocity, U , with the distance normal to the wall, y, is
composed of two parts: an inner part and an outer part. In the inner region close to
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the wall it is traditionally assumed that the only important parameters are the wall
shear stress, τw , the kinematic viscosity, ν and the fluid density, ρ. This leads to

U+ = f (y+), (2.1)

where U+ = U/Uτ , y+ = yUτ/ν, Uτ =
√

τw/ρ is the wall-shear velocity and f (y+) is
some function of y+ only.

In the outer part of the flow it is usual to assume a defect law of the form

U1 − U

Uτ

= g(η), (2.2)

where U1 is the free-stream velocity far from the wall, i.e. U (y) in the limit y → ∞
and η = y/δ in the case of boundary layers (δ is a measure of the boundary layer
thickness which might, for example, be taken as the value of y where U (y) = 0.99U1 –
the 99% thickness). In the case of fully developed pipe or channel flow U1 would
be the centre-line velocity and η = y/R for pipe flow (R is the pipe radius) or η = y/h

for channel flow (h is the distance from the centreline to the wall). Once these forms
are assumed, overlap arguments (Millikan 1938) suggest that, in the limit of infinite
Reynolds number, there will be a region (y+ → ∞ and η → 0) in which the mean
velocity profile has the form

U+ =
1

κ
ln(y+) + C, (2.3)

where κ and C are universal constants. It must be emphasized that this only applies in
some region that is not too close to the wall and is also far from the outer edge of the
layer. It only strictly applies as δ+ = δUτ/ν → ∞ (δ+ = y+/η). Coles (1956) extended
this form to take account of the outer part of the flow by adding a wake function,
leading to

U+ =
1

κ
ln(y+) + C + w(η), (2.4)

where w(η) is the required wake function. This gives a reasonable fit to experimental
data away from the wall. There have been various suggestions for extending this
form to cover the region near the wall as well, the most commonly used being due
to Van Driest (1956) and Reichardt (1951). Both these forms (and many others) are
functions which attempt to give the correct Taylor series expansion near the wall
based on the appropriate boundary conditions and asymptote to a logarithmic form
(as given by (2.3)) far from the wall. These may then be combined with a wake
function in an attempt to fit the whole mean velocity profile from the wall to the edge
of the layer.

Whilst these functional forms (alone and in various combinations) are satisfactory
in many situations, there are anomalous features which make them unsatisfactory for
the present analysis. These problems will be discussed during the development of the
new form.

The form derived here has a simple three-layer structure. It consists of three super-
imposed boundary layers: a sublayer, an ‘overlap’ layer and a ‘wake layer’. The final
function is the sum of these three parts – essentially this may be seen as an extension
of Coles (1956) original law-of-the-wall, law-of-the-wake concept.

The first thing to note is that, since the three layers are added together, they must
all be consistent with the boundary conditions and the conditions at the edge of the
layer. Note that we will first develop the concept for turbulent boundary layers, then
extend it to other wall-bounded flows (pipe and channel flows).
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2.1. The sublayer

The form of the sublayer function is inspired by the form presented by Reichardt
(1951). Reichardt constructed a function with the correct first-order Taylor series
expansion (for zero-pressure-gradient boundary layers) that reached a constant value
at some distance from the wall and was defined by a single parameter that could be
identified with the sublayer thickness. This was then combined with the logarithmic
law so that the composite profile asymptotes to a logarithmic region far from the
wall.

Taylor series expansion of the boundary layer equations gives us the correct
asymptotic form for the boundary layer near the wall as

U+ = y+ + 1
2
p+

x y+2 + a1y
+4 + h.o.t., (2.5)

where p+
x = (ν/ρU 3

τ )(dp/dx) and a1 is a coefficient assumed to be universal for zero-
pressure-gradient flows.

It is surprising that none of the existing formulations take this expansion into
account fully: they ignore the second term on the right as small. One reason is,
perhaps, that it is only in strong pressure gradients that the p+

x term is significant
and noticeable. In moderate- to high-Reynolds-number flows p+

x is generally small
which has sometimes led to the mistaken conclusion that the pressure gradient does
not directly affect the inner layer. Whilst this is a small effect it seems sensible to
include it in the functional form when analysing flows with strong pressure gradients.

At the edge of the boundary layer we would expect the gradient ∂U/∂y to tend
to zero at large y and hence the sublayer function must have an asymptotically zero
gradient in this limit. The functional form chosen for the sublayer region is

U+ = y+
c

(
1−

(
1+2(y+/y+

c )+1
2
(3−p+

x y+
c )(y+/y+

c )2− 3
2
p+

x y+
c (y+/y+

c )3
)
e−3y+/y+

c

)
. (2.6)

This function asymptotes to a constant value at large y+ and has the Taylor-series
expansion

U+ = y+ + 1
2
p+

x y+2 − 9
4

(
1
2
y+

c + p+
x y+2

c

)
y+4

/
y+4

c + h.o.t. (2.7)

It should also be noted that this profile is defined by one free parameter, y+
c , which

may be considered as a measure of the sublayer thickness. This is a constant for a
given boundary layer profile, i.e. each profile has a unique value of yc. It will already
be apparent that changes in this sublayer thickness will lead to a shift in the log-law
intercept. The sublayer defined in this way is a boundary layer in its own right since
it satisfies the correct asymptotic and boundary conditions.

2.2. The ‘overlap’ region

This is the part of the boundary layer in which both the viscosity and the outer flow
scales are negligible. It is often derived by an overlap argument with an outer-velocity
defect law (Millikan 1938). It may, alternatively, be derived by defining a region in
the flow where the ‘mean relative motions’ depend only the distance from the wall
and one relevant constant velocity scale, generally taken as the wall-shear velocity
(Townsend 1956).

This layer must then satisfy appropriate boundary and asymptotic conditions. Since
the function is to be added to the sublayer function, it is important that it should not
interfere with the correct boundary conditions at the wall: this places a limit on the
lowest order of its Taylor-series expansion. It must also asymptote to a constant value
at large y. This is an important feature that is neglected in many existing functions.
Many assume a logarithmic region that extends to infinity, then add a wake function to
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this. The folly in this approach becomes apparent when dealing with boundary layers
in strong favourable pressure gradients. In these flows the wake can be extremely
small or even non-existent. If we remove the wake then the behaviour at the edge
of the layer is unphysical since the function continues to increase without bound. It
makes good physical sense for the overlap layer to become asymptotically constant
at the edge of the layer since the turbulent eddies which maintain the gradient (in
some fashion) disappear beyond the edge of the layer. Various authors have noted
this and tried to fix the behaviour but the correction has generally been in terms of a
‘patch-up’ solution which adds a term to make the gradient zero at the ‘edge’ of the
layer (which it is not for boundary layers, though it may be small). These solutions
to the problem (see e.g. Lewcowitz 1982) also behave anomalously beyond the edge
of the layer so that arguments or analysis must avoid the limit as y → ∞. This may
be a minor restriction but it is still incorrect behaviour from a physical point of view.
The ‘logarithmic’ layer should be a function that becomes asymptotically logarithmic
at infinite Reynolds number. The leading-order behaviour should be greater than
or equal to y4 so that it does not disturb the correct expansion near the wall. The
function chosen is

U+ =
1

6κ
ln

(
1 + (0.6(y+/y+

c ))6

1 + η6

)
. (2.8)

This has the desired behaviour since while y+ � 1 and η � 1 the function has a
logarithmic form. Naturally a significant logarithmic region can only occur if the
Reynolds number, δ+, is sufficiently large. The factor 0.6 in the function is merely
a small correction that makes the function fit the data slightly better. It could have
been omitted for ‘neatness’ but since the objective is to provide an excellent fit to
the data, it has been retained. The other attractive feature of this function is that it
naturally splits into the form f (y+) + g(η) and since the wake function is a function
of η then the whole profile naturally splits into this two-part form which fits neatly
with classical theory.

2.3. The wake function

The wake function presented here is simply a good fit to the data. The only constraints
on its construction are that it must have an expansion at y =0 of higher than third
order and it must asymptote to a constant value at large y (and do so rapidly). The
form chosen is

w(η) = b

(
1 − exp

(
−5(η4 + η8)

1 + 5η3

))
, (2.9)

where b is a measure of the wake strength and is equivalent to Coles’ wake parameter.
In this study b is found for each profile by curve-fitting the full functional form to the
data. It should be noted that boundary layer profiles asymptote to the free-stream
velocity very quickly which explains the role of the term η8. This rapid approach is
one reason why some researchers have chosen to set the gradient at the edge of the
layer to zero even though this is not the correct asymptotic behaviour for boundary
layers.

3. Pipe and channel flows
In the case of pipe and channel flows it should be expected that the overall

functional form of the profile is very similar since the physical and dimensional
arguments translate. The difference is that, in these flows, the correct outer condition
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is that ∂U/∂y = 0 at y =R, y = h, where R and h are the pipe radius and the channel
half-width respectively. It turns out not to be difficult to modify the above form to
take this into account, at least approximately. The sublayer function is allowed to
remain the same since, even at very low Reynolds number, the contribution of this
term to the gradient at the edge is negligible. The logarithmic function is modified to

U+ =
1

6κ
ln

(
1 + (0.6(y+/y+

c ))6

1 + η6 + η12

)
(3.1)

which ensures a gradient very close to zero at the centreline (note here η = y/R, y/h for
pipe and channel flows respectively). The actual gradient at the centreline depends on
the Reynolds number and the ratio R+/y+

c (or h+/y+
c in channel flow). Even for very

low Reynolds numbers the gradient is extremely small (for R+ = 100, ∂U+/∂y+ < 10−6)
and is certainly precise enough for the purpose of analysing the data. The wake
function is also modified by the addition of an extra term

w(η) = b

(
1 − exp

(
− 5(η4 + η8)

1 + 5η3 + 10.5η8

))
(3.2)

which ensures that this term has zero gradient at the centreline. Examination of
available data shows that this form is an excellent fit. The approach also makes some
physical sense since it suggests that, while we are far from both the centreline and
the wall, the flow is unaware of the difference between a channel (or pipe) flow and
a boundary layer flow. There is, perhaps, some argument that a pipe flow should
be different from a channel flow near the centreline but this function fits all the
data extremely well which suggests that the differences are small. Note that Wosnik,
Castillo & George (2000) suggest that the functional forms of the mean velocity
profiles of pipe and channel flows are very different to those of boundary layer flows,
with the former overlap region described by a log-law whereas the latter are described
by a power-law. The author disagrees on this point.

4. Some comments on the final form
At this point it is worth noting how the new form fits in with the classical approach.

4.1. High Reynolds number

The form of the ‘logarithmic’ or ‘overlap’ region at very high Reynolds number is
easy to derive. We take the approach of assuming we are in a region where y+ → ∞
and η → 0 simultaneously. This can occur if δ+ → ∞. In a boundary layer with a
finite applied pressure gradient the p+

x term becomes zero since, if we define an outer
pressure-gradient parameter as β = (δ∗/ρU 2

τ )(dp/dx) (following Clauser 1956), then
p+

x = β/δ∗+. In this case the sublayer function reduces to a constant value y+
c which is

assumed to be a universal constant in the absence of external effects. The contribution
of the ‘wake function’ becomes zero in this region and so the whole profile becomes

U+ =
1

κ
ln(y+) + y+

c − 1

κ
ln(y+

c /0.6) (4.1)

which is equivalent to the traditional form of the log-law and the value of the intercept
is given in terms of y+

c . It will be shown later that the zero-pressure-gradient data
suggest that the appropriate value of y+

c is 12 and κ = 0.39 which gives a value of
4.32 for the intercept. These values are close to those suggested recently by Österlund
et al. (2000) (κ = 0.38, intercept= 4.1) from their analysis of high-Reynolds-number
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Figure 1. The three parts of the functional form shown with the composite profile which
is the sum of all three. The composite profile is the fit to the zero-pressure-gradient data of
Spalart (1988), Rθ = 1410

boundary layer data. The functions and their contributions to a zero-pressure-gradient
profile are shown in figure 1.

4.2. Defect law

The defect law may be written as U+
1 − U+, where U1 is the external velocity, outside

the boundary layer. Strictly speaking U+
1 is the limit of U+ as y → ∞. It is not possible

to use this limit with most of the common formulations since they assume a log-law
extending to infinity. The new formulation has no such difficulty and it is easy to
show that for large Reynolds number (it does not need to be particularly large) and
away from the sublayer,

U1 − U

Uτ

=
1

6κ
ln

(
1 + η6

η6

)
+ b exp

(
−5(η4 + η8)

1 + 5η3

)
. (4.2)

Note that this form is still appropriate for flows such as sink-flow boundary layers
where the wake may be negligible, since the function naturally becomes zero at large
η regardless of the value of b. Finally we consider the case where η → 0 but we are
still beyond the sublayer (so y+ is large) and find the classical defect law

U1 − U

Uτ

= − 1

κ
ln(η) + C1, (4.3)

where C1 is a constant. A similar procedure leads to the defect law for a pipe or
channel flow

U1 − U

Uτ

=
1

6κ
ln

(
1 + η6 + η12

3η6

)
+ b

(
−0.074 + exp

(
− 5(η4 + η8)

1 + 5η3 + 3.5η12

))
(4.4)

and again taking the limit as η → 0 we have

U1 − U

Uτ

= − 1

κ
ln(1.2η) + 0.926b, (4.5)
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which is of course equivalent to the usual form derived from the overlap arguments
leading to the logarithmic law.

4.3. Reynolds-number dependence

It is interesting to note that, if we ignore the effect of a pressure gradient, the form
given above for the ‘overlap’ region may be written as

y+ ∂U+

∂y+
=

1

κ

(a6δ+6 − 1)y+6

(1 + a6y+6)(δ+6 + y+6)
(4.6)

where a = 0.6/y+
c is a universal constant in the absence of pressure-gradient effects.

This is of the form

y+ ∂U+

∂y+
= φ(y+, Re) (4.7)

since δ+ is an appropriate local Reynolds number of the boundary layer. It is not
difficult to show that φ(y+, Re) = 1/κ in the limit as Re → ∞. This, (4.7), is the form
suggested by Barenblatt (1996) as a starting point for his analysis which leads to a
power-law form for the mean velocity profile in general and a log-law in the infinite
Reynolds number limit. This is an important point since it has been noted by various
researchers that the ‘overlap’ should be Reynolds-number dependent. This has led
to various alternative forms for this region (other than logarithmic). Here a simple
construction both illustrates and makes explicit the Reynolds-number dependence
of this region and still retains the asymptotic form of a log-law. The classical law-
of-the-wall law-of-the-wake formulation also contains an implicit Reynolds number
dependence (since it is of the form f (y+) + g(η)) but this disappears when the wake
parameter is identically zero (as it may be in the case of sink-flow boundary layers).

5. Fitting the data
The final function then has only three potentially free parameters if it is assumed

that κ is a universal constant (a point that will be returned to later). They are the
sublayer parameter, y+

c , the wake parameter, b, and, in the case of boundary layers
the boundary layer thickness, δ. Hence this new functional form has the same number
of degrees of freedom as the classical form. It may be expected (and will be shown)
that the sublayer parameter is a function of the streamwise pressure gradient, p+

x . At
high Reynolds numbers the value of p+

x tends to be very small and hence the sublayer
parameter will be a universal constant (which essentially plays the same role as the
intercept in the traditional basic form of the log-law expression).

In order to examine the variation of parameters from data it is necessary to fit this
expression to the data. The approach used here is a nonlinear curve-fitting routine
which will find the best fit of any function to a data-set. The program uses the
Levenburg–Marquardt algorithm based on LMDIF from MINPACK, with some
modifications. All fits to the data were carefully inspected and proved to be excellent
optimizations of the function.

As a starting point, data for the smooth-wall zero-pressure-gradient boundary layer
were examined in order to find the appropriate value of the von Kármán constant, κ ,
and the appropriate value of the sublayer parameter, y+

c . It was reasoned that there
should be no additional parameters that may affect these ‘universal’ constants. It is
worth noting at this point that we have not eliminated the possibility that κ may
depend on the pressure gradient. The fitting is done allowing b and δ to vary.
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Figure 2. Fit of the functional form to the zero-pressure-gradient data of Spalart (1988),
Rθ = 1410, and Österlund (1999).

The fit of the function to the zero-pressure-gradient DNS of Spalart (1988) and
the zero-pressure-gradient measurements of Österlund (1999) is shown in figure 2.
This is shown simply to demonstrate the goodness of fit for typical boundary layer
profiles without the pressure-gradient effects to be discussed later. Also shown is the
asymptotic ‘infinite’-Reynolds-number log-law using the constants selected for the
model (y+

c =12 and κ =0.39).

5.0.1. The data

A wide range of data has been used in establishing the values of parameters and
their variation. Much of this has been DNS data since it has two obvious advantages.
The first is that the wall shear stress is known accurately for these flows so there
is minimal uncertainty associated with the values of the parameters. The second
is the availability of very near-wall data without the complicating effects of probe
corrections etc. Also relevant is the fact that when examining pressure-gradient effects
the pressure-gradient parameter, p+

x , is generally larger at low Reynolds number, hence
pressure-gradient effects are likely to be larger in low-Reynolds-number flows. This
means that the restriction of DNS data to low Reynolds number is not a disadvantage.
Experimental data have also been used where possible and have been selected on the
basis of the minimum uncertainty in wall shear stress and general accuracy of the res-
ults. Some researchers have used a fit of the log-law (with particular values of the uni-
versal constants) to calculate the wall shear stress, which is obviously unacceptable
when we are examining parametric effects in this region. A large amount of data has
been used to develop the model that follows.

6. The effect of pressure gradient on the inner flow
A wide range of flows was examined in order to determine the effect of strong

pressure gradients on the inner flow. Of particular interest is the change of the sublayer
thickness y+

c . It is quite well known that strong pressure gradients lead to a departure
of the flow from the universal law of the wall with favourable pressure gradients
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Figure 3. The variation of y+
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x for fixed κ .
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Figure 4. The variation of κ with p+
x (both κ and y+

c allowed to vary).

causing the mean velocity profile to fall above the standard ‘log-law’ and adverse-
pressure-gradient flows below. The data shown in figure 3 illustrate this behaviour.
The data for this figure have been derived by fitting the appropriate profiles with a
fixed value of κ = 0.39 and allowing the wake parameter and the sublayer parameter
to vary. The data on this plot include adverse-, favourable- and zero-pressure-gradient
boundary layers, pipe flows and channel flows. Whilst there is some scatter, a clear
trend is obvious overall. The zero-pressure-gradient results (p+

x = 0) give some idea of
the scatter in the value of this parameter even in flows where external effects should
be small.

Since there is no a-priori reason to assume that the value of κ should be unaffected
by the pressure gradient, figure 4 shows the results when κ is also allowed to vary



Inner scaling for wall-bounded flows subject to large pressure gradients 227

–0.04 –0.02 0 0.02 0.04 0.06 0.08 0.10
px

+

yc
+

8

12

16

20

Figure 5. The variation of y+
c with p+

x with varying κ .

in the fitting process. The results for y+
c from this procedure are shown in figure 5.

The data shown on these plots are the same as that shown in the later figures where
the sources are identified. These figures simply show that there is a consistent overall
trend with pressure gradient.

The variation is no surprise but the questions to be asked are: ‘why should the
sublayer thickness vary with pressure gradient’; and ‘should κ also vary, and if so,
why?’ This brings us to the next and, perhaps, most interesting part of the paper.

7. A simple model for the change of the inner flow with pressure gradient
The model that follows was inspired by a simple, seemingly casual, observation in

Clauser (1956). He pointed out that the thickness of the sublayer in zero-pressure-
gradient flow is consistent with the idea that the sublayer grows until it reaches
a critical Reynolds number which is approximately the minimum critical Reynolds
number of a laminar boundary layer. This is an appealing idea since it links the
sublayer to the laminar boundary layer. The idea is that at a certain distance from
the wall the sublayer reaches a local Reynolds number at which it becomes unstable
and at this point perturbations grow and turbulence is generated. It is interesting to
note that the maximum production does indeed occur at a position which may be
considered to be the edge of the sublayer. In fact it occurs in the range 10.5 <y+ < 12
(from the DNS of Spalart 1988) which coincides quite well with the value of y+

c =12
found above for zero-pressure gradient boundary layers (it is quite interesting that a
simple rough analysis by Clauser in his paper also suggested a value of 12 which was
found here by different means).

This idea immediately gives an inkling of an explanation for the change in y+
c with

pressure gradient. The addition of an adverse pressure gradient to a laminar boundary
layer reduces the critical Reynolds number for instability and a favourable pressure
gradient increases it. Hence it seems plausible that in an adverse pressure gradient
the sublayer would reach its critical Reynolds number sooner, i.e. closer to the wall,
and in a favourable pressure gradient it would occur later, i.e. further from the wall.
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Two things are immediately obvious. The first is that the sublayer is not exactly a
laminar boundary layer – though it is something like one since it is a wall-bounded
region dominated by viscosity. Secondly it is not a trivial matter to apply a stability
analysis to the sublayer since it is has difficult-to-define boundary conditions and is
subjected to vigorous stirring from the outer flow (it is unlikely to be possible at all
using the usual approaches to laminar boundary layer stability analysis). So the idea
has some appeal in a physical sense but it is difficult to make any quantitative use of
the concept.

The next essential idea comes from a paper by Van Driest & Blumer (1963). In this
paper the authors develop a way of predicting the effect of both pressure gradient and
turbulence intensity on the transition of laminar boundary layers. The approach is
quite clever and involves defining a new Reynolds number for the boundary layer in
terms of the vorticity of the layer and the distance from the wall. In this way a single
critical Reynolds number for the boundary layer can be defined and the effect of
the pressure gradient is to modify the profile such that the critical Reynolds number
occurs closer to the wall in an adverse pressure gradient or further from the wall in a
favourable pressure gradient. This simple approach gives reasonable agreement with
the calculations from linear stability theory and allows the inclusion of effects such
as free-stream turbulence.

It turns out that this Reynolds number can also be expressed in terms of the local
total shear stress (or the local total shear-stress velocity) which is more useful when
examining the sublayer of a turbulent boundary layer. In the case of a zero-pressure-
gradient boundary layer this would be equal to the wall shear stress (to a close
approximation) and hence a local Reynolds number would simply be y+. Thus we
would expect the sublayer ‘edge’ to occur at a critical fixed value of y+ which would
appear to be around 11 to 12 from the data. This critical value of y+ is denoted by
y+

c as was used earlier in the functional form. Qualitatively, then, we know that the
local total shear stress is increased in an adverse pressure gradient and hence expect
the sublayer to reach the critical value closer to the wall at a smaller value of y+ and
vice versa for a favourable pressure gradient.

Having, hopefully, established the physical reasoning and the origin of these ideas
the next step is to express the model mathematically so concrete predictions can be
made. Since we wish to look at the local value of the total shear stress near the wall
we can use the expansion of the local total shear stress which is

τ

τw

=
ν∂U/∂y − uv

U 2
τ

= 1 + p+
x y+ + h.o.t. (7.1)

This equation is derived directly from the momentum equation. Note that it is the
total shear stress that is important, not just the viscous contribution from the mean
velocity gradient. The appropriate critical Reynolds number can then be defined as

Rc =
UT yc

ν
(7.2)

where UT =
√

τ (y = yc)/ρ and yc is the critical value of y at which the sublayer
becomes unstable. Rc is assumed to have a universal value for all wall-bounded flows.
The value is easily obtained from the zero-pressure-gradient data since, in this case,
UT =Uτ and hence Rc = y+

c (ZPG) = 12. The value 12 is chosen since it is around
the middle of the small scatter for zero-pressure-gradient data and is also a round
number. The value can be refined slightly but for the purpose of explaining the model
and achieving some quantitative predictions this value will suffice.
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Figure 6. The variation of y+
c with p+

x as given by the model (solid line) compared with
the data. �, Sink-flow boundary layers (Spalart 1986); +, pipe flows (Eggels et al. 1994 and
Loulou et al. 1997); 	, Channel flows from the Database of Turbulence and Heat Transfer; ◦,
boundary layer flows (Skote et al. 1998 and Nagano et al. 1991).

Now if we substitute the expression for the local stress we arrive at the equation

Rc =
UT yc

ν
=

ycUτ

ν

√
1 + p+

x y+
c . . . (7.3)

and hence we have an equation for y+
c . This is more conveniently written in the form

p+
x y+3

c + y+2
c − R2

c = 0. (7.4)

Since this is a cubic equation there are obviously three possible solutions. At present
we will assume that the appropriate solution is the smallest positive solution for a
given p+

x and Rc. This seems reasonable given that this is the value that will be reached
first as the sublayer grows. Figure 6 shows the locus of the solution of this equation
for the value of Rc = 12. Note that Rc is the only free parameter and since this is
obtained from the zero-pressure-gradient case there is very little freedom to adjust the
function to better fit the data. The correlation with the data is quite reasonable given
the simplicity and inflexibility of the model. In fact the prediction is as good as any of
the available empirical correlations known to the author. There is some scatter in the
results, particularly for strong adverse pressure gradients. The worst agreement is for
strongly non-equilibrium flows. Equilibrium here is used in the traditional sense that
the mean velocity profile in defect form collapses as do the Reynolds stresses. Also all
appropriate non-dimensional parameters remain constant with streamwise distance.
Strongly non-equilibrium flows are ones in which the external parameters change
quickly and the non-dimensional parameters characterizing the flows do not remain
constant. It is not surprising that such a simple model does not predict such flows
accurately since it is based on the idea that the local sublayer thickness depends only
on the local pressure-gradient parameter. In flows where the parameters are changing
quickly then non-local and historical effects must play a role in the development. The
worst case gives an error of around 9% in the value of y+

c as predicted by the model
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Figure 7. The variation of y+
c with p+

x as given by the model compared with the data
for boundary layer flows only.

when compared with the value from fitting the experimental profiles. Note that this
plot shows data from boundary layers, pipe flows and channel flows.

The channel and pipe flow data fall consistently above the predicted variation. If
we exclude these flows and show only boundary layer profiles the collapse on the
prediction is even better as shown in figure 7. It is possible that channel and pipe flows
may have a slightly higher value of Rc than boundary layers. A value of Rc = 12.8
improves the agreement for these flows substantially but it is not known at this stage
if a different value is appropriate.

7.1. Variation of κ

Initially, the idea that the von Kármán constant, κ , is also affected by a pressure
gradient was resisted by the author. It was thought that there are too many functional
forms that allow an arbitrary variation in this parameter that may be adjusted to
fit any particular model. Consideration of the physical model, however, suggests that
there should be an effect of the pressure gradient on this parameter. The argument is
that, if the model defines a length scale for the inner flow as yc, the sublayer thickness,
then it also defines a velocity scale for the inner flow as UT . We must now be more
explicit about the description of the physical model. The idea is this: the viscous
sublayer grows to a point where it reaches the critical Reynolds number based on
the value of the total stress and the distance from the wall. At this point the flow is
unstable to perturbations and the instability generates some form of turbulent eddies
which grow out from this point to form the turbulent flow outside of the sublayer.
These eddies grow in such a way that their length scale grows with their distance from
the wall and hence they are ‘attached eddies’ in the sense of Townsend (1976). The
velocity scale of these eddies is determined by the critical velocity scale of the sublayer
and so we end up with an array of eddies of different sizes but with the same velocity
scale, i.e. UT . This model then leads naturally to a log-law since the mean velocity
gradient in the region can only be specified by the velocity scale and the distance from
the wall, i.e. ∂U/∂y =UT /κoy. Note the subscript ‘o’ has been used to denote that this
is a universal constant unaffected by pressure gradient (or Reynolds number). The
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actual κ that appears in the traditional formulation is defined by ∂U/∂y = Uτ/κy and
comparing these two formulations suggests that κ/κo = Uτ/UT . The universal value
can be found from zero-pressure-gradient data which suggests a value of around 0.39.
There is still some dispute about the appropriate value but this will suffice for the
present. It appears to fit the data very well. What the model then suggests is that
strong adverse-pressure-gradient flows should have an appropriate value of κ which
is somewhat less than 0.39 and strong favourable pressure gradients a value which
is somewhat more than 0.39. In fact in terms of the parameters of the model the
relationship is

κ

κo

=

√
1

1 + p+
x y+

c

. (7.5)

This is no arbitrary variation that may be adjusted to suit the model. Since y+
c is fully

defined by (7.4) then, once we have chosen the value of κo from the best available
zero-pressure-gradient data, the variation of κ is completely defined. Again it is worth
emphasizing the strongly constrained nature of the model. There are at best only two
‘free’ parameters Rc and κo but these are obtained from zero-pressure-gradient data
and can only be chosen within the natural scatter of the measurements (this gives
about a ±6% variation for Rc and a ±3% variation in κo). The values of y+

c versus
p+

x shown in figures 6 and 7 were obtained by fitting the profile with the value of κ

as given by (7.5). Figure 8 shows the variation of the velocity scale, UT , as found by
fitting the data compared with the prediction of the model. The data shown are the
same as those used in figure 6, which include pipe and channel flows. The agreement
is excellent, but this quantity is much less sensitive to errors in the prediction than
y+

c . Values from this plot are used later to non-dimensionalize the Reynolds stresses.

8. The fit of the new form to the mean flow data
The equation for the sublayer parameter and the von-Kármán constant allow us

to fit the whole boundary layer profile given a value of p+
x . The parameters allowed
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Figure 9. The fit of the function to favourable- (Spalart 1986) and adverse-pressure-gradient
(Nagano et al. 1991) boundary layer profiles.

to vary in the fitting procedure are the wake parameter and the boundary layer
thickness (actually δ+ which is equivalent). Allowing the boundary layer thickness as
a parameter in the model may strike some readers as cheating. It may be argued that
the boundary layer thickness should be independently defined, for example as the
99.5% thickness or an integral thickness such as that defined by Clauser (1956). The
difficulty with trying to define an independent thickness of this nature comes from
the structure of the boundary layer itself. This is particularly evident in the present
situation where the Reynolds number is low and the sublayer makes a significant
contribution to the boundary layer thickness. Any overall integral length or percentage
thickness will be made up from contributions from the sublayer, overlap layer and
outer (wake) region. Hence a length of this nature is not a real measure of the outer
flow length-scale alone. Fitting the functional form to the boundary layer in order to
extract an outer length scale is a more sensible approach since the function explicitly
defines a sensible outer length scale. At high Reynolds number the contribution
of the sublayer is much smaller and so ‘independently’ defined thicknesses may be
used. In all cases examined here the boundary layer thickness found from the fitting
procedure was within ±3% of the 98.5% thickness of the particular layer. In the case
of pipe and channel flows this parameter was fixed at the value of the pipe radius or
channel half-height. Figure 9 shows the fit to data using the functional form with the
values predicted by the model. The two profiles have been chosen to have reasonably
strong pressure gradients and they are ones for which the model prediction for y+

c is
quite close. This choice is not meant to mislead the reader as to the accuracy of the
approach but these profiles better illustrate the goodness of fit of the shapes of the
profiles, rather than those that fall further from the predicted curve.

9. Near-wall Reynolds stresses
The above analysis predicts a length scale, yc, and a velocity scale, UT , which

define the sublayer. It is interesting to consider the relevance of these scales for
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Figure 10. The Reynolds shear stress for strong favourable-, zero- and strong
adverse-pressure-gradient flows with standard (a) and the new (b) inner-flow scaling.

the behaviour of the Reynolds stresses near the wall. It is important to note that
any inner scaling should apply only very near the wall since the flow further out is
influenced by the outer scales (this is particularly true of low-Reynolds-number flows
since the separation between inner and outer scales is small). This effect is related to
the ‘inactive motions’ as discussed by Townsend (1976).

In favourable-pressure-gradient flow the stresses are reduced near the wall, i.e.
the initial increase in the stresses at y = 0 is smaller than for zero-pressure-gradient
flows and for adverse-pressure-gradient flows the increase is larger. This is shown in
figure 10 where the Reynolds shear stresses for strong adverse-, strong favourable- and
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zero-pressure-gradient flows are shown plotted with the standard inner scaling.
The five flows chosen are zero pressure gradient (Skote, Henkes & Henningson
1998), strong adverse pressure gradient (Skote et al. 1998), channel flow with strong
favourable pressure gradient (Kuroda, Kasagi & Hirata 1990) and two favourable-
pressure-gradient boundary layers (Spalart 1986). The difference is very obvious.
Standard inner scaling assumes that the appropriate length scale is the viscous length
scale ν/Uτ and the appropriate velocity scale is the wall-shear velocity, Uτ . The model
of the flow presented here suggests that the appropriate scales should be UT and yc.
Figure 10 also shows the Reynolds shear stresses near the wall scaled with this new
scaling. The values used for y+

c are those found from the mean velocity profile rather
than the model though the differences are small. In the new scaling the x-coordinate
has been multiplied by twelve so the numbers on the axis are comparable with the
values shown on the other plot using conventional inner flow scaling. The collapse
is very good near the wall. A similar scaling can be applied to the RMS streamwise
velocity fluctuation as shown in figure 11. Here again the new scaling brings the
turbulence quantities into close correspondence near the wall.

9.1. The other components of the turbulence

The above simple scaling does not appear to bring the vrms and wrms fluctuations into
such close correspondence. The effect of a pressure gradient on these components is
much stronger. Since these components must be strongly affected by the presence of
streamwise vortices then it is possible that the the wall-shear velocity also plays a role
in their development (UT relates to conditions at the edge of the sublayer). Hence it
is reasonable to suggest that these components may also be a function of the ratio
UT /Uτ . Examining the variation of the levels of these quantities close to the wall
suggests that the appropriate scaling is√

v′2

UT

(
Uτ

UT

)2

= f1(y/yc) (9.1)

and √
w′2

UT

(
Uτ

UT

)2

= f2(y/yc) (9.2)

where f1(y/yc) and f2(y/yc) are universal functions. Of course, as already noted, this
scaling only applies near to the wall: further out the outer flow will dominate the
behaviour. The collapse of the data with the above scaling is shown in figures 12
and 13. The precise reason for the difference in scaling of these components is not
completely clear at this stage.

10. Towards separation
An interesting feature of the model is its behaviour as the wall shear stress goes to

zero. As Uτ → 0, the velocity scale then becomes UT = R1/3
c Up and substituting into

(7.4) we find

yc =
νR2/3

c

Up

, (10.1)

where U 3
p = (ν/ρ)(∂p/∂x). Now since the whole inner profile may be expressed in

terms of y/yc we have the interesting result that in this limit the profile may be
expressed completely in terms of yUp/ν = yp . In particular a measure of the thickness
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Figure 11. The RMS streamwise fluctuating velocity for strong favourable-, zero- and strong
adverse-pressure-gradient flows with standard (a) and the new (b) inner-flow scaling.

of the ‘viscous sublayer’ is ν/Up which is a sensible result since the only velocity scale
in this situation should be Up . Substitution of this into the expression for the mean
velocity profile suggests that in this situation the log-law still persists but becomes
a logarithmic law in yUp/ν. In the overlap region, (yp → ∞, η → 0), the function
becomes

U

Up

=
R1/3

c

κo

ln
(
0.6yp/R2/3

c

)
. (10.2)

The appropriate Reynolds number for this boundary layer should be Upδ/ν so
we would only expect a logarithmic region where this parameter is large, i.e. in a
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Figure 12. The RMS normal-to-the-wall velocity for strong favourable-, zero- and strong
adverse-pressure-gradient flows with standard (a) and the new (b) inner scaling.

strong pressure gradient. It is interesting that Tennekes & Lumley (1972) showed
that traditional overlap arguments lead to a similar logarithmic form for boundary
layers with zero wall shear stress and strong pressure gradient. From the data of
Stratford (1959) they estimated a value of 5 for the constant in front of the logarithm.
This model using the value of Rc = 12 suggests a value of 5.87. The fact that this
approach gives a sensible velocity scale and logarithmic overlap is interesting, but
further work is needed to establish the correct behaviour for the sublayer function
and the logarithmic intercept. This work is in progress.
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.

11. Conclusions
This paper presents a useful, sensible, self-consistent functional form for the

mean-velocity profile for turbulent wall-bounded flows that allows for a consistent
parameterization of data.

The results of this parameterization and the physics of the functional form have led
to a new simple model to explain the effects of pressure gradients on the inner region
of turbulent wall-bounded flows. The model also provides quantitative predictions
of these effects which are in reasonable accord with experimental (and numerical)
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results. This is particularly satisfying given that the model has only one universal
constant (in addition to the universal von Kármán constant) which is found from zero
pressure-gradient flows.

The model is defined and made completely explicit in the paper so that it may be
compared to further data in order to prove or disprove the assumptions. The final
functional form for the mean velocity profile may be summarized as

U+ = y+
c

[
1−

(
1+2(y+/y+

c )+ 1
2
(3−p+

x y+
c )(y+/y+

c )2 − 3
2
p+

x y+
c (y+/y+

c )3
)
e−3y+/y+

c

]
+

√
1 + p+

x y+
c

6κo

ln

(
1 + (0.6(y+/y+

c ))6

1 + η6

)
+ b

(
1 − e

− 5(η4+η8)
1+5η3

)
, (11.1)

where κo = 0.39 and y+
c may be found from equation (7.4) if the value of p+

x is known.
One of the most attractive features is the physical basis of the model which provides

an understanding of why and how different parametric effects might modify the inner
region of turbulent wall-bounded flows. The model with the proposed functional
form gives a good description of wall-bounded flows in the approximate range of
pressure-gradient parameter −0.02 < p+

x < 0.06.

This type of work depends on a close examination of a wide range of data. The
author has had access to these data through the generosity of various researchers
in making their data freely available. This generosity has been further organised
through the establishment of a range of databases throughout the world that can be
readily accessed via the Internet. In particular the author has made extensive use of
the following databases: The ERCOFTAC database, the Data-Base of Turbulence
and Heat Transfer (supported by the Ministry of Education Science and Culture in
Japan) and the AGARD database of test-cases for large eddy simulation. In addition
Dr Martin Skote provided me with a link to his thesis data for which I am very
grateful.
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